Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2304130

ABSTRACT

The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds' most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.

2.
Front Microbiol ; 13: 802292, 2022.
Article in English | MEDLINE | ID: covidwho-2154754

ABSTRACT

Background: Antibody testing is often used for serosurveillance of coronavirus disease 2019 (COVID-19). Enzyme-linked immunosorbent assay and chemiluminescence-based antibody tests are quite sensitive and specific for such serological testing. Rapid antibody tests against different antigens are developed and effectively used for this purpose. However, their diagnostic efficiency, especially in real-life hospital setting, needs to be evaluated. Thus, the present study was conducted in a dedicated COVID-19 hospital in New Delhi, India, to evaluate the diagnostic efficacy of a rapid antibody kit against the receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: Sixty COVID-19 confirmed cases by reverse transcriptase-polymerase chain reaction (RT-PCR) were recruited and categorized as early, intermediate, and late cases based on the days passed after their first RT-PCR-positive test report, with 20 subjects in each category. Twenty samples from pre-COVID era and 20 RT-PCR-negative collected during the study period were taken as controls. immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the RBD of the spike (S) protein of SARS-CoV-2 virus were detected by rapid antibody test and compared with the total antibody against the nucleocapsid (N) antigen of SARS-CoV-2 by electrochemiluminescence-based immunoassay (ECLIA). Results: The detection of IgM against the RBD of the spike protein by rapid kit was less sensitive and less specific for the diagnosis of SARS-CoV-2 infection. However, diagnostic efficacy of IgG by rapid kit was highly sensitive and specific when compared with the total antibody against N antigen measured by ECLIA. Conclusion: It can be concluded that detection of IgM against the RBD of S protein by rapid kit is less effective, but IgG detection can be used as an effective diagnostic tool for SARS-CoV-2 infection in real-life hospital setting.

3.
Frontiers in microbiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1837406

ABSTRACT

Background Antibody testing is often used for serosurveillance of coronavirus disease 2019 (COVID-19). Enzyme-linked immunosorbent assay and chemiluminescence-based antibody tests are quite sensitive and specific for such serological testing. Rapid antibody tests against different antigens are developed and effectively used for this purpose. However, their diagnostic efficiency, especially in real-life hospital setting, needs to be evaluated. Thus, the present study was conducted in a dedicated COVID-19 hospital in New Delhi, India, to evaluate the diagnostic efficacy of a rapid antibody kit against the receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods Sixty COVID-19 confirmed cases by reverse transcriptase–polymerase chain reaction (RT-PCR) were recruited and categorized as early, intermediate, and late cases based on the days passed after their first RT-PCR–positive test report, with 20 subjects in each category. Twenty samples from pre-COVID era and 20 RT-PCR–negative collected during the study period were taken as controls. immunoglobulin M (IgM) and immunoglobulin G (IgG) antibodies against the RBD of the spike (S) protein of SARS-CoV-2 virus were detected by rapid antibody test and compared with the total antibody against the nucleocapsid (N) antigen of SARS-CoV-2 by electrochemiluminescence-based immunoassay (ECLIA). Results The detection of IgM against the RBD of the spike protein by rapid kit was less sensitive and less specific for the diagnosis of SARS-CoV-2 infection. However, diagnostic efficacy of IgG by rapid kit was highly sensitive and specific when compared with the total antibody against N antigen measured by ECLIA. Conclusion It can be concluded that detection of IgM against the RBD of S protein by rapid kit is less effective, but IgG detection can be used as an effective diagnostic tool for SARS-CoV-2 infection in real-life hospital setting.

4.
Clin Chim Acta ; 527: 11-16, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1611645

ABSTRACT

BACKGROUND AND AIMS: Monoclonal/biclonalgammopathy of unknown significance (MGUS/BGUS) is observed in COVID-19. This study was conducted to determine the changes in serum protein electrophoresis (SPEP) in COVID-19. MATERIALS AND METHODS: In this descriptive (cross-sectional) study, serum inflammatory markers (CRP, IL-6 and ferritin) were measured and SPEP was carried out by capillary electrophoresis method in 35 controls and 30 moderate & 58 severe COVID-19 cases. RESULTS: Serum inflammatory markers were increased in COVID-19 cases with severity. M-band(s), ß-γ bridging and pre-albumin band(s) on SPEP were observed in 15.5, 11 & 12% of severe cases and 3, 4 & 0% moderate COVID-19 cases respectively. Area under curve (AUC) of α 1 and α 2 bands of SPEP increased significantly in severe COVID-19. CONCLUSIONS: We conclude that SPEP changes like the appearance of M-band(s) indicating MGUS(BGUS), ß- γ bridging indicating the presence of fast-moving immunoglobulins, pre-albumin band indicating the rise in serum transthyretin level and the increase in AUC of α 1 and α 2 bands indicating the rise in positive acute phase reactants occur in COVID-19. The occurrence and magnitude of these changes are higher in severe COVID-19 than that in moderate COVID-19. The diagnostic and prognostic significance of these SPEP changes are worth exploring.


Subject(s)
COVID-19 , Blood Proteins , Cross-Sectional Studies , Electrophoresis, Capillary , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL